

 DISCUSSION DRAFT
 10-22-04

OPEN XML COURT INTERFACE

Electronic Filing Manager Architecture

October 22, 2004

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) i

T A B L E O F C O N T E N T S

Page

I. INTRODUCTION ...2
A. OBJECTIVES..2
B. DOCUMENT ORGANIZATION ...2

II. REQUIREMENTS...5
A. FUNCTIONAL REQUIREMENTS ..5
B. INFORMATION REQUIREMENTS..8
C. INTEGRATION REQUIREMENTS...12
D. POLICY REQUIREMENTS ...14
E. BUSINESS MODEL REQUIREMENTS ...15

III. DESIGN DECISIONS...18
A. NETWORK PROTOCOLS ...19
B. COMMUNICATION PROTOCOLS ..20
C. MESSAGING PROTOCOLS..20
D. AUTHENTICATION PROTOCOLS..23
E. ENCRYPTION PROTOCOLS..24
F. APPLICATION DATA STRUCTURE DEFINITIONS...25
G. APPLICATION ENVELOPE SCHEMA..26
H. APPLICATION OBJECT SCHEMA..28
I. SERVICE DESCRIPTION SCHEMA ..29
J. COLLABORATION AGREEMENT SCHEMA ..31
K. REGISTRY AND REPOSITORY SCHEMA...32
L. DATABASE STRUCTURE..33
M. LOCATION OF THE CLERK REVIEW INTERFACE...34

IV. DESIGN ARCHITECTURE ...37
A. SYSTEM ARCHITECTURE ..37
B. SYSTEM INTERFACES...38
C. SOFTWARE COMPONENTS..40
D. EFM FRAMEWORK ..42
E. EFM INTERFACES ..43
F. EFM CLASSES ...45
G. USE CASES...46

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) ii

T A B L E O F C O N T E N T S
(continued)

APPENDIX A – GLOSSARY
APPENDIX B – REFERENCES
APPENDIX C – REVISION HISTORY

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 1

I. INTRODUCTION

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 2

I. INTRODUCTION

The Open eXtensible Markup Language (XML) Court Interface (OXCI) consortium of state courts
intends to produce a middleware implementation for electronic filing for use within all levels of state
courts for the receipt, transmission, and validation of electronic filings, court orders, and associated
data. The middleware will provide a uniform open source implementation of an Electronic Filing
Manager (EFM), compliant with the specifications developed by the LegalXML Electronic Court
Filing Technical Committee (TC) of the Organization for the Advancement of Structured Informa-
tion Standards (OASIS). However, these interface specifications are still in development and are not
a sufficient basis for a complete implementation. This document is intended to define the technical
design requirements for developing a complete architecture for electronic filing.

A. OBJECTIVES

OXCI has identified conflicts between the existing Court Filing standards and the other technical
requirements of the OXCI court filing architecture. For instance, the current Court Filing standard,
Version 1.1, is defined as a Document Type Definition (DTD), which is inconsistent with the OXCI
requirement that schemas be used rather than DTDs. While the next Court Filing specification,
“Blue” is to be based on schemas, it is still a work in progress.

In addition to identifying conflicts, OXCI has also identified gaps in the architecture that must be
addressed prior to implementation. For instance, although OXCI will require court documents to
comply with the Court Filing XML (CF XML) standard and that the documents be transmitted using
the Simple Object Access Protocol (SOAP) as the messaging protocol, the interface between the
Court Filing and SOAP standards has not yet been fully defined.

The purpose of this document is to develop the requirements and architecture down to a level of
detail that addresses the conflicts and gaps in the existing family of standards and to provide strong
guidance, where possible, about preferred solutions.

B. DOCUMENT ORGANIZATION

As stated above, this document provides the requirements and high-level architectural design
decisions for the court filing architecture. The Court Filing, Query/Response and Court Policy
schemas are described in a separate deliverable, the XML Schemas document. The detailed
implementation decisions for the EFM software component are described in the EFM Software
Requirements and EFM Software Design documents.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 3

The rest of this document is organized as follows:

 Section II includes the architectural requirements of the OXCI EFM.

 Section III lists a number of design questions that must be resolved including candidate
solutions and the OXCI decision for each.

 Section IV proposes a system and software architecture including the components, interfaces,
classes, and use cases.

There are also two appendices:

 APPENDIX A provides a glossary of the acronyms used in this document.

 APPENDIX B includes a bibliography of reference material used in the creation of this
document.

 APPENDIX C includes a revision history for this document.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 4

II. REQUIREMENTS

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 5

II. REQUIREMENTS

This section lists the architectural requirements for the OXCI Electronic Filing Manager. The
requirements are organized according to the following categories:

 Functional Requirements describe the users, functions, and components of the EFM.

 Information Requirements provide a description of the court information standards and
documents supported by the EFM.

 Integration Requirements describe the required integration approach using the Web services
standards.

 Policy Requirements provide a description of other requirements regarding the appropriate
use of technologies.

 Business Model Requirements describe several business models that must be supported by
the EFM.

A. FUNCTIONAL REQUIREMENTS

The functional requirements for the EFM architecture include the users and functions of electronic
filing systems and the components that compose a complete EFM.

1. Users and Functions

The EFM architecture must support the users and functions defined in the OASIS LegalXML Court
Filing 1.1 standard (hereafter referred to as the Court Filing standard). The Court Filing standard
lists the users and user-specific functions of an electronic filing system as follows:

 Attorneys and Pro Se defendants and plaintiffs.

» File pleadings.

» Send and receive notifications.

» Review pleadings, orders, and notices of individual cases.

» Open criminal cases.

» Open civil cases.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 6

 Judicial officers and judicial support staff.

» File orders.

» Send and receive notifications.

» Review pleadings, orders, and notices of individual cases.

 Court clerks.

» File orders and notices within court.

» Send and receive notifications.

» Review pleadings, orders, and notices of individual cases.

» Keep the court files, including sealed, confidential records.

» Provide access to court files.

 Clerk staff.

» Receive, index, and file pleadings, orders, and notices for litigants, attorneys, judges,
and clerk of court.

» Review queued entries prior to docketing.

» Review pleadings, orders, and notices of individual cases.

 System administrators (super users).

» Maintain (add, delete, modify) user lists.

» Maintain databases.

» Maintain court policy.

In this document, we will use the term “filer” to refer to any individual or entity that makes an
electronic filing. Common examples of filers are attorneys; judicial officers; court clerks; public
sector entities such as city, county, state, and federal governments; and private sector entities
including corporations.

EXHIBIT I presents a Unified Modeling Language (UML) system context diagram that distills the
users and functions described in the Court Filing standard into six use cases. The use cases include
the following:

 Submit Filing in which a filer submits a filing with the court.

 Review Filing in which a clerk reviews and accepts or rejects filings submitted to the court.

Electronic Filing Manager

EFSP

Administrator

Clerk

Submit Filing

CMS

Query Filing

Query Policy

Manage Accounts

View Logs

Review Filing

DMS

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

USE CASE DIAGRAM

EXHIBIT I

5053\02\65274(vsd)

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 7

 Query Filing in which a user requests information on a specific case from the court Case
Management System (CMS).

 Query Policy in which a user obtains the policies specific to a court.

 Manage Accounts in which an administrator creates, modifies, and removes accounts and
privileges on the EFM.

 View Logs in which an administrator reviews the system and application logs for the EFM.

The architecture must define a specific sequence of events and exchanges for each of the above use
cases. These use cases will be developed in detail in Section III.

2. Court Filing Components

The EFM architecture must also support the components of an electronic filing system defined in the
Court Filing standard. The Court Filing standard and the “Standards for Electronic Filing Processes”
document defines five basic components: the EFM, the Electronic Filing Provider (EFP), the
Electronic Filing Service Provider (EFSP), the Case Management System (CMS), and the Document
Management System (DMS). The Court Filing standard defines each of these components as
follows:

EFM

An EFM (or management system) is middleware that receives, presents, and manages electronic
filings; the EFM is also considered to be the server in the electronic filing process.

EFP

An EFP is a front-end application that prepares and submits filings. The EFP is the application on
the filer’s side of the electronic filing architecture, and it is also called the client.

EFSP

The EFSP is the architectural component that supports a user’s creation of a filing for submission to
a court. The component may be provided by a court or a separate entity, such as a commercial
vendor.

CMS

A court CMS manages the receipt, processing, storage, and retrieval of data associated with a case
and performs actions on the data.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 8

DMS

A DMS manages the receipt, indexing, storage, and retrieval of electronic and nonelectronic
documents associated with a case.

B. INFORMATION REQUIREMENTS

The EFM Architecture must adhere to open standards for describing both general information and
court-filing-specific information. This includes adherence to the W3C XML Schema and OASIS
LegalXML Court Filing standards.

1. W3C XML Schema

The World Wide Web Consortium (W3C) is an organization of companies and individuals that
develop and promote the open standards that define the Web, including HyperText Transfer Protocol
(HTTP), HyperText Markup Language (HTML), and XML. XML 1.0 is the protocol recommended
by the W3C for describing structured information on the Web. Although XML 1.0 includes a
standard for defining XML structures, the Document Type Definition (DTD), W3C now recom-
mends the use of a later standard, XML Schemas, for defining XML data exchange structures.

In support of the W3C standards, the EFM architecture must adhere to the XML 1.0 standard for all
information exchanged between agencies and use XML Schemas for defining all XML structures.

2. OASIS LegalXML Court Filing

OASIS is a nonprofit consortium of organizations and individuals dedicated to the development and
promotion of XML standards for electronic business in a wide range of industries. The LegalXML
member section of OASIS supports the legal and justice community and includes TCs developing
XML standards for court filing, notary services, Legislatures, and others. The Court Filing TC
focuses on standards for electronic filing of court information. In order to support the widest range
of courts and court information, the Court Filing TC has a policy of making many portions of its
specifications “over-inclusive but optional.”

OXCI requires compliance with the Court Filing standards; therefore, the EFM architecture must
support the following Court Filing specifications:

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 9

Court Filing

The Court Filing 1.1 specification, developed in collaboration with Consortium of State Court
Administrators (COSCA) and the National Association of Court Managers (NACM), is an OASIS
Proposed Standard. The specification includes a DTD defining a legalEnvelope structure for
encapsulating legal filings. The DTD also defines elements for submitting and confirming filings
with a court and placeholders for query and response elements to be defined in the Query/Response
specification. The data elements in the Court Filing 1.1 specification have been reconciled with
elements in the Rap Sheet, Regional Information Sharing Systems (RISS), and American Associa-
tion of Motor Vehicle Administrators (AAMVA) XML through the Justice XML initiative.

Because XML Schemas were designed to replace DTDs, it should be possible to convert the Court
Filing DTD to a schema with little or no loss of interoperability. However, the DTD also includes
elements that overlap with elements in the Web service protocols that are described in subsection
II.C. Therefore, at a minimum, the EFM architecture should modify the Court Filing schema to
minimize or eliminate the overlap of elements. Unfortunately, this results in incompatibility with
strict implementations of the current Court Filing specification. Consequently, the OXCI EFM will
not attempt to maintain compatibility with the Court Filing 1.1 specification.

The Court Filing TC is currently developing a follow-on specification code-named Court Filing
“Blue.” According to the working definition developed at the December 2003 meeting of the TC,
“OASIS LegalXML Court Filing Blue is a set of specifications that provides the ability to
electronically exchange information between and among the courts, their partners, and customers.”
At the start of this project, the requirements for Court Filing standard Blue were still in development
and included the following principles:

 Leverage existing data and messaging standards.

» W3C XML Schemas.

» Global Justice XML Data Model (GJXDM) 3.0.

 Support court-specific extensions.

» W3C XML Namespaces.

» LegalXML Court Policy.

 Support multiple levels of interoperability.

» Level 1: LegalXML Court Filing Blue envelope.

» Level 2: Level 1 with a supported messaging standard, such as Electronic Business
XML (ebXML) Messaging Service 2.0, and server authentication.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 10

» Level 3: Level 2 with user authentication and access controls.

 Establish recognized methods for messaging and communication.

» HTTP.

» Simple Mail Transfer Protocol (SMTP).

» File Transfer Protocol (FTP).

» Secure Sockets Layer (SSL).

» Web services (SOAP, Web Services Description Language [WSDL], Universal De-
scription, Discovery and Integration [UDDI]).

» ebXML.

» Secure/Multipurpose Internet Mail Extensions (S/MIME).

» Synchronous or asynchronous operation.

 Support security.

» XML Signatures to support authentication, non-repudiation and document integrity.

» XML Encryption to support sealed documents.

» Security Assertion Markup Language (SAML).

» Public-key certificates.

» Privacy to support protection of payment information.

 Comply with governmental standards.

» Federal Information Processing Standards (FIPS).

» National Crime Information Center (NCIC) standards.

» Health Insurance Portability and Accountability Act of 1996 (HIPAA).

 Support court functional standards.

» COSCA/NACM.

 Support all court types and court filing types.

 Support all payload types.

» Portable Document Format (PDF).

» Tagged Image File Format (TIFF).

» XML documents (court document).

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 11

» Others.

 Support compatibility independent of vendor or product.

 Support version control.

The OXCI EFM must support the Court Filing Blue specification when it reaches the Proposed
Recommendation stage. In the interim, the OXCI EFM has developed a Court Filing schema which
is documented in the XML Schema deliverable. OXCI will submit the Court Filing schema to
LegalXML for review, comment, and consideration in future specifications. Ultimately, OXCI will
target Level 2 interoperability with other Court Filing Blue implementations. The specific design
decisions will be discussed in Section III.

Query/Response

In December 2002, the Court Filing TC published a draft Electronic Court Filing Query and
Response specification. The Query/Response specification defines an XML DTD for sending
queries through the EFM and receiving responses from the court CMS and/or DMS. The query and
response elements are designed to be encapsulated within a Court Filing 1.1 legalEnvelope element.
The specification also defines a set of queries to be supported by a compliant CMS or DMS.

The OXCI EFM must conform to the Query/Response specification when it reaches the Proposed
Recommendation stage. The Court Filing TC has halted further development of the Query/Response
specification until the Court Filing Blue specification is more clearly defined. In the interim, OXCI
has developed a Query/Response schema which is documented in the XML Schema deliverable.
OXCI will submit the schema to LegalXML for review, comment, and consideration in future
specifications.

Court Policy

The Court Filing TC created a subcommittee to develop a Court Policy specification. In November
2002, the subcommittee published a draft of a Court Policy Interface Requirements document that
was reviewed and rejected by the TC. The draft explained that the “over-inclusive but optional”
principle of the current Court Filing necessitates a means for an interface that describes a court’s
rules and administrative procedures. The Court Policy specification was designed to meet the “need
for all involved with electronic filing (courts, parties, attorneys, prosecutors, and so forth) to know
the expectations and/or constraints placed on the data elements and other aspects of a given
electronic filing system. The information that describes a Court Policy for a given court will likely
be fairly static and could therefore be described in a schema published in a well-known location by
each court.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 12

The OXCI EFM must support the Court Policy specification when it eventually reaches the Proposed
Recommendation stage. The Court Filing TC has halted further development of the Court Policy
specification until the Court Filing Blue specification is more clearly defined. In the interim, OXCI
has developed a Court Policy schema which is documented in the XML Schema deliverable. OXCI
will submit the schema to LegalXML for review, comment, and consideration in future specifica-
tions.

CMS Application Program Interface

The Court Filing TC created a CMS Application Program Interface (API) subcommittee to develop
standards for interfacing between the EFM and a CMS or DMS. In 2001, the subcommittee
produced a requirements document titled “EFM-CMS Interface Requirements,” which describes the
requirements for the CMS API. The document proposes that the CMS API should conform to the
Court Filing, Court Policy, and Query/Response specifications and provides additional requirements
regarding transactions, error handling, and security. The TC suspended further development of the
CMS API specification until other architectural issues were resolved. The EFM must conform to the
CMS API specification once work resumes and it eventually reaches the Proposed Recommendation
stage. In the interim, the EFM must adhere to the requirements defined in the EFM-CMS Interface
Requirement document. However, it is not reasonable to assume that every CMS and DMS will
adhere to the CMS API standard. Therefore, OXCI recommends that each EFM implementation
include court-specific CMS and DMS Adapters that provide CMS API-compliant interfaces to the
CMS and DMS.

C. INTEGRATION REQUIREMENTS

With the Internet as the prime example, the advantages of building architectures around open
standards are well established. The leading software vendors have now embraced the Web services
standards as the best way to design applications for global interoperability. In order to maximum
independence from the underlying architectures and to maximize compatibility with current and
future applications, the EFM architecture must support the baseline Web service protocols defined
by the W3C and OASIS, including:

 Simple Object Access Protocol (SOAP).

 WSDL.

 UDDI.

The function and advantages of each of the baseline Web service protocols are described in the
following subsections.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 13

1. SOAP

SOAP is the fundamental enabling technology for Web services. Developed originally by a group of
software vendors, including Microsoft and IBM, the SOAP specification was submitted to the W3C
in 1999 for adoption as a standard. SOAP provides basic messaging layer functions using XML to
support language- and platform-independent remote procedure calls (RPCs) across the Internet
infrastructure. To date, two versions of the SOAP specification have been published. The SOAP 1.1
specification is technically a W3C “Note,” indicating its status as an interesting proposal but
granting it no specific endorsement by the W3C. This is most likely due to long-standing
Intellectual Property Rights (IPR) with Microsoft, IBM, and other vendors that were finally resolved
in 2002. However, SOAP 1.1 has been widely implemented and is in fact a well-tested “de facto”
standard. The SOAP 1.2 specification, a minor update to SOAP 1.1, is in active development and
has reached the W3C Candidate Recommendation stage. There are also a number of important
extensions to SOAP, such as the SOAP Messages with Attachments, XML Signature, SAML and
WS-Security specification, that can provide additional features to the messaging layer as they are
needed.

2. WSDL

The WSDL specification defines an XML-based protocol for describing a Web service. The WSDL
specification was codeveloped by Microsoft and IBM and submitted to the W3C in 2001. The
current version, the WSDL 1.2 specification, is a W3C Working Draft. WSDL includes all the
information that a system needs to locate a SOAP-based Web service on a remote system, connect
and bind to the Web service, issue RPCs, and receive the results.

One of the required properties of any Web service is that it be self-describing. Therefore, the EFM
must provide WSDL definitions for each Web service-based interface.

3. UDDI

The UDDI specification defines an XML-based protocol for both publishing WSDL definitions in a
registry and for querying registries for Web services and schemas. UDDI enables application
developers to identify published Web services that meet certain criteria, facilitating the outsourcing
of those components of the application. Microsoft and IBM codeveloped the UDDI specification
and submitted it to OASIS for approval. Currently, UDDI versions 2 and 3 have reached the
Committee Specification stage in the standards process and the UDDI Specification TC intends to
submit the UDDI Version 2 specification for approval as an Approved OASIS Standard.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 14

In Web service deployments involving small numbers of organizations and interfaces, WSDL
information can be easily exchange directly, obviating the need for a central registry. However, as
the use of Web services scales up to include more organizations and more interfaces, a registry
standard such as UDDI becomes essential. Therefore, the EFM must eventually support publication
of WSDL definitions for each of the supported Web services to UDDI-based registries.

D. POLICY REQUIREMENTS

In addition to the functional, information, and integration requirements, OXCI has identified some
policy requirements for the EFM architecture. The EFM should:

1. Use freely licensed and open source technologies.

The “open” in the OXCI name indicates a preference for using freely licensed and open technologies
for achieving electronic court integration. An extension of this principle is a preference for using
open source software. Using open source software allows anyone to view or modify the code at any
time and contribute those modifications back to the public codebase. As a policy, the EFM
architecture should minimize its dependence on technologies that are either proprietary or known to
have IPR restrictions that would limit implementation of the architecture. In addition, all source
code necessary to implement or extend the EFM should be made freely available.

2. Simplify the architecture to minimize the cost and complexity of implementation.

The resources available for implementing electronic court filing can vary considerably according to
the size and function of the court. Typically, small courts do not have the financial resources or
technical capabilities for expensive or complex information technology projects. If the EFM
architecture is to be applicable to both small and large courts, the essential portions of the
architecture must be simplified to minimize the cost and complexity of a baseline implementation.

3. Scale to support both large and small courts.

The EFM must be simple and inexpensive enough to be practical for implementation by small
courts. However, the architecture must also be sufficiently extensible so that courts with greater
resources can add the additional functionality that they require.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 15

4. Support all the electronic filings for a single court.

The EFM must be able to support all the filings required by a court. That is, no single court should
need to implement multiple EFMs. There is a wide variety of legal cases including criminal, civil,
juvenile, family, traffic, tax, bankruptcy, military, and tribal laws, and numerous combinations of
these cases may occur in a single court. The EFM must therefore be flexible and extensible enough
to support any and all of these case types.

5. Support filing fees and payments managed through an external payment system.

The EFM must be able to pass through payment requests and receipt information of filing fees and
other payments to the clerk review interface and the CMS. However, the EFM will not be
responsible for collecting or distributing the fees.

6. Support antivirus checking.

The EFM must support the checking of any documents for viruses before the documents are
transmitted to another system. This includes documents being filed into the DMS or sent in response
to a query. The antivirus interface will be defined in the Software Design deliverable.

E. BUSINESS MODEL REQUIREMENTS

At the December 2002 face-to-face meeting of the LegalXML Court Filing TC, Mr. Dallas Powell,
representing the Tybera Development Group, Inc., presented an analysis of court filing business
models titled “Architectural Models, Business Decisions, and Interoperability Issues.” The paper
described and identifies issues with each of the following models:

 Court Control Model in which the court manages both the EFSP and the EFM.

 Vendor Control Model in which vendors provide both the EFSPs and the EFM.

 Split Control Models in which vendors provide the EFSPs that connect to the EFM managed
by the court.

 Single Source Control Model in which courts and automated legal firms all provide their own
EFSP and EFM.

As Court Filing standards continue to evolve, it is unclear which, if any, of these models will
predominate. Most likely, all three models will be implemented to some degree. In order to be

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 16

applicable to a wide range of courts, the EFM must be flexible enough to support each of these
models.

* * * * * *

This section presented the requirements of the EFM as defined in the RFP and in the LegalXML
Court Filing standards. The next section will identify the key design issues that need to be addressed
prior to implementation of the EFM and will use these requirements as a context for arriving at a
solution for each issue.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 17

III. DESIGN DECISIONS

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 18

III. DESIGN DECISIONS

The Court Filing standards provide good definitions for the application-layer components of
electronic court filing applications. However, many of the standards are incomplete and some
conflicts exist between the standards. In addition, the standards do not address the other components
that make up a complete system specification. OXCI has identified the key design decisions that
will provide the framework for the EFM implementation. The following table summarizes the
design issues, candidate solutions, and OXCI’s decisions described in this section.

Design Issue Candidate Solutions OXCI Decision

Network Protocols TCP/IP, UDP/IP TCP/IP

Communication Protocols HTTP 1.1, FTP, SMTP HTTP 1.1

Messaging Protocols SOAP 1.2 With Attachments and WS-
Security, ebXML Messaging 2.0

ebXML Messaging Service
2.0

Authentication Protocols SSL, XML Signature EFSP: SSL as needed; Filer:
None

Encryption Protocols SSL, XML Encryption SSL; Future ebXML
Messaging support for XML
Encryption as needed

Application Data Structure
Definitions

XML DTD, XML Schema, RDF XML Schema

Application Envelope
Schema

Court Filing 1.1 legalEnvelope
element, New GJXDM 3.0-based
FilingSubmissions element, None

Court Filing Blue when
available; New GJXDM 3.0-
based FilingSubmissions
element

Application Object Schema Court Filing 1.1, New GJXDM 3.0-
based Court Filing, Query/Response
and Court Policy Objects

Court Filing Blue When
Available; GJXDM 3.0-based
Court Filing,
Query/Response and Court
Policy Objects in Interim

Service Description Schema WSDL, ebXML CPP/A 2.0, None WSDL

Collaboration Agreement
Schema

WSEL, ebXML CPP/A 2.0, None None

Registry and Repository
Schema

UDDI, ebXML Registry, None UDDI (future)

Database Interface Relational, Object-Oriented Relational

Location of the Clerk
Review Interface

In the CMS, in the EFM In the EFM

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 19

In the following subsections, we describe each design issue to be considered, compare the candidate
solutions, decide on a selected solution, and provide the reasoning behind the decision.

A. NETWORK PROTOCOLS

Network protocols refer to the protocols in the Open System Interconnection (OSI) network model
that provide functions such as global network addressing and routing. Although there are a wide
range of network protocols in use, such as IPX and Appletalk, since the global adoption of the
Internet, the Internet Protocol (IP) family of protocols, have emerged to become the de facto
standards for network connectivity. Therefore, there are basically two choices for network
protocols: Transmission Control Protocol/Internet Protocol (TCP/IP) and User Diagram Proto-
col/Internet Protocol (UDP/IP).

1. TCP/IP

TCP/IP is a reliable protocol for encapsulating and transmitting data between hosts on IP networks.
The TCP packet header includes sequence numbers and acknowledgements that automatically
segment and reassemble information in the correct order and retransmit information that is lost in
transmission. TCP is the protocol underlying the Internet’s predominant application protocols,
including HTTP and FTP used on the Web and SMTP used for e-mail.

2. UDP/IP

UDP/IP is a high-performance protocol for encapsulating and transmitting data between hosts on IP
networks. UDP packets include a minimal header that does not provide reliable delivery.
Applications that typically use UDP include multimedia applications that require high performance
but do not require reliable delivery.

Decision: TCP/IP

The EFM uses TCP/IP as the network protocol for the following reasons:

 UDP/IP does not support reliable delivery.

 TCP/IP is required by all of the major Internet application protocols.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 20

B. COMMUNICATION PROTOCOLS

Communication protocols (also called application protocols in the OSI network model) provide the
functionality that drives the key applications on the network. The key Internet communication
protocols are HTTP, FTP, and SMTP.

1. HTTP 1.1

HTTP is an Internet protocol that supports the transfer of information from a Web server to a Web
client, typically a Web browser. The information may be either static files or information that is
dynamically generated by the Web server. Because HTTP is so widespread and well supported,
many applications have also adopted HTTP as the standard communication protocol for transferring
all types of data that are not necessarily related to the Web.

2. FTP

FTP is an Internet protocol that supports the transfer of files from a file server to a client. Files
available through FTP are almost universally static files.

3. SMTP

SMTP is the Internet protocol for the exchange of e-mail. Although SMTP can be used for
messaging between applications, it is typically only used for transmitting mail between users.

Decision: HTTP 1.1.

The EFM uses HTTP as the communication protocol for the following reasons:

 HTTP is widely used for exchange between applications.

 HTTP supports firewall transparency; that is, it is allowed through most firewalls.

 Although the required messaging protocol, SOAP, theoretically supports HTTP, FTP, and
SMTP, the SOAP binding is only fully defined over HTTP.

C. MESSAGING PROTOCOLS

Messaging protocols provide functionality needed for integration across enterprise applications such
as application-layer transport, routing and packaging (TRP), encapsulation, security, and RPCs.
There are several XML-based messaging protocols, including XML-RPC, but the two most common

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 21

messaging protocols based on Web services are SOAP and ebXML Messaging Service (ebMS) 2.0
protocol. The table below lists the critical and secondary features associated with each of these
protocols. The advantages of each protocol are shown in bold.

Component SOAP (GXA) ebMS 2.0

SOAP Version 1.2 w/Attachments 1.1 w/Attachments

SOAP Status Recommendation Note (well tested)

Security Protocol WS-Security Included

Security Protocol Status Candidate Recommendation Standard

Reliable Messaging Protocol WS-Reliable Messaging Included

Reliable Messaging Protocol
Status

Working Draft Standard

Critical Feature

XML Signature Yes Yes

XML Encryption Yes Future

Error Reporting Better Good

Secondary Feature

HTTP Binding Better Good

RPC Better Good

Time Stamps Create, Expire, Receive Create

Manifest No Yes

Routing Requires WS-Routing Yes

Support Microsoft, IBM, BEA freebXML, Sun, HP, IBM,
Sybase, XML Global

1. SOAP 1.2 Messaging With Attachments and WS-Security

Based on the requirements, the EFM must conform to either the SOAP 1.1 or SOAP 1.2 specifica-
tions. However, both SOAP specifications require extensions that address additional functions such
as encapsulation and security. Microsoft is leading the development of many of these SOAP
extensions and refers to the combination of SOAP and these extensions as the Global XML Web
Services Architecture (GXA). Two of the GXA extensions are the SOAP Messaging with
Attachments and WS-Security specifications. The SOAP Messaging with Attachments specifica-
tions extend SOAP 1.1 and 1.2 to support encapsulation using either the Multipurpose Internet Mail
Extensions (MIME) or Direct Internet Message Encapsulation (DIME) protocols. The WS-Security
specification adds security extensions for supporting the XML Digital Signature and XML

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 22

Encryption specifications within SOAP 1.2 (but not SOAP 1.1). The WS-Reliable Messaging
specification which will support acknowledgements and retransmissions is currently an OASIS
Working Draft.

2. ebMS 2.0

ebXML is a joint effort between OASIS and the United Nations Centre for Trade Facilitation and
Electronic Business (UN/CEFACT) which are responsible for the Electronic Data Interchange (EDI)
standards. ebXML is dedicated to the development of standards for electronic business, focused on
the needs of small- and medium-sized businesses. ebXML is responsible for several OASIS and
UN/CEFACT specifications, including:

 ebXML Messaging.

 ebXML Registry.

 ebXML Collaborative Partner.

 ebXML Implementation.

 ebXML Business Process.

 ebXML Core Component.

ebMS 2.0 is an Approved OASIS Standard based on SOAP 1.1 with Attachments. It includes
extensions for XML Digital Signatures. The ebXML Messaging TC decided to wait to support
XML Encryption until it became a W3C Recommendation and XML Encryption was approved as an
OASIS Recommendation in December 2002. The next version of the ebXML Messaging
specification, version 3.0, will support XML Encryption.

ebMS 2.0 also supports reliable messaging. SOAP is designed for sending one-way messages.
SOAP extensions for reliable messaging associate RPC requests with their responses and handle
application-layer acknowledgements and retransmissions. Without support for reliable messaging in
the messaging protocol, applications need to implement this functionality, often in a nonstandard
way.

Decision: ebMS 2.0.

The EFM uses ebMS 2.0 as the messaging protocol for the following reasons:

 ebMS 2.0 is a more mature specification. It is an approved standard while WS-Security is a
Committee Recommendation and WS-Reliable Messaging is a Working Draft.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 23

 The ebMS is well supported by both free and commercial messaging solutions including
freebXML Hermes, XML Global GoXML Messaging, and Sun ONE Integration Server.

 The ebXML framework is freely licensed, while GXA still has some unresolved IPR issues.

D. AUTHENTICATION PROTOCOLS

Security protocols control access to information. Among other security functions, the EFM must
support authentication and nonrepudiation. Authentication refers to the verification that a user is
whom he/she claims to be. According to the Information Security Handbook, nonrepudiation refers
to an “authentication that with high assurance can be asserted to be genuine, and that cannot
subsequently be refuted.” The court needs the ability to authenticate the EFSP in order to limit
which vendors are authorized to submit electronic filings with the court. The court also needs the
ability to authenticate the filer in order to link the filer to the filing and to limit which filers are
authorized to submit electronic filings with the court. The two leading protocols for authentication
of Web services are SSL and XML Signatures.

1. SSL

SSL is a communications-layer protocol for authenticating and encrypting a wide range of network
communications. SSL is most often used to secure HTTP communications between a Web server
and a browser. However, SSL is also frequently used to secure HTTP communications between
Internet applications, including Web service applications. SSL supports authentication by password
or by public-key certificate.

2. XML Signature

The W3C has published a Recommendation titled “XML Signature Syntax and Processing” for
describing digital signatures using XML. Digital signatures are values computed using various
cryptographic techniques that can be attached to messages to validate the identity of the sender
and/or the integrity of the message. Digital signatures are usually created using public-key
certificates. Both ebMS 2.0 and SOAP support the XML Signature specification.

Decision: SSL for EFSP; EFSP will authenticate the filer.

The EFM authenticates the EFSP and passes through any authentication of the filer. The EFM uses
SSL for authenticating the EFSP for the following reasons:

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 24

 The EFSP communicates directly with the EFM. Therefore, the connection can be secured at
the communication layer between the HTTP server and the HTTP client.

 Nonrepudiation of the EFSP is not a critical requirement for the EFM.

The EFSP authenticates the filer, and the particular mechanism for filer authentication is not within
the scope of this architecture. However, some courts may require the filer’s authentication
information for the following reasons:

 The filer does not always communicate directly with the EFM. Therefore, the filer’s
authentication needs to be embedded in the application information rather than at the com-
munication layer.

 The ability to irrefutably link the filer to the filing through nonrepudiation is critical to the
integrity of electronic court filing systems. Digital signatures are much better than passwords
in meeting this requirement.

Therefore, if the filing includes the XML Signature of the filer, the EFM will pass this information
through to the CMS and DMS.

Beyond the authentication protocol, the EFM should support additional access controls to protect
against denial-of-service attacks or any other malicious attacks against the EFM and its back-end
systems including the CMS and the DMS. At a minimum, the EFM should be protected by a
firewall that supports access controls lists (ACLs) that filter by TCP/IP ports and/or addresses. In
this configuration, the court should consider limiting external access to the EFM to the IP addresses
of the EFSPs. Combined with SSL authentication, this will provide two-factor authentication of all
incoming traffic.

An additional layer of protection could be achieved by installing a second ebXML Message Service
Handler (MSH) external to the firewall and routing all messaging through both the external MSH
and the MSH in the EFM inside the firewall. However, this configuration will not be tested as part
of this project.

E. ENCRYPTION PROTOCOLS

The EFM also needs to support confidentiality. Although most court filings are public record, some
filings will be sealed and access to them would be tightly restricted. Confidentiality is achieved by
encrypting the information in such a way that only the authorized recipients have the ability to
decrypt the data. The two leading protocols that support encryption of Web services are SSL and
XML Encryption.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 25

1. SSL

In addition to authentication, SSL supports encryption at the communication layer. However, this
only protects the information during the transmission from the sender to the receiver. In the case of
an electronic filing, this means that the communication between the EFSP and the EFM could be
encrypted using SSL, but SSL would not encrypt the filing within the EFM.

2. XML Encryption

The W3C has published a Recommendation titled “XML Encryption Syntax and Processing” for
representing encrypted information in XML. XML Encryption is related to XML Signature although
the combination of digital signatures and encryption is currently not defined in either standard.
Unlike SSL, XML Encryption supports encryption at the application layer, which means that the
data is encrypted both during transmission and on the EFM.

Decision: Use SSL as Needed; Future ebMS support for XML Encryption as needed.

The EFM uses SSL as needed now and will support ebMS 3.0 compatibility with XML Encryption
for the following reasons:

 XML Encryption supports encryption of the data from end-to-end.

 Although encryption is an important feature of the EFM, it is required only in special filings.
In the interim, these filings should be encrypted during submission using SSL or may be
managed outside the electronic filing process.

F. APPLICATION DATA STRUCTURE DEFINITIONS

The EFM must adopt a standard for the definition of XML structures. The W3C has published three
specifications for defining XML Structures: the XML DTD, XML Schema, and Resource
Description Framework (RDF) specifications.

1. XML DTD

Using XML DTDs is the method for defining XML structures defined within the XML 1.0
specification. The current LegalXML Court Filing specifications are defined using DTDs.
However, DTDs are limited in their support for defining data types and complex structures.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 26

2. XML Schema

The XML Schema specifications are W3C Recommendations that suggest XML Schemas as
replacement for DTDs. XML Schemas support more complex data types and can be very specific
about the type, length, and even the allowed values for a particular data element.

3. RDF

The “RDF Model and Syntax Specification” is a W3C Recommendation for describing structures
comparable to XML Schemas with metadata that enable improved search capabilities and,
eventually, intelligent software agents. The RDF is the basis for the Semantic Web. Mr. Tim
Berners-Lee, the founder of the W3C, describes the Semantic Web as “an extension of the current
Web in which information is given well-defined meaning, better enabling computers and people to
work in cooperation.”

Decision: XML Schema.

The EFM uses XML Schema for the following reasons:

 The RFP identifies the use of Schemas as a requirement for the EFM.

 The Schema standard supports more data types and more specific data definitions than
DTDs.

 It is not clear that the applications that interface to the EFM, such as the CMS or DMS, will
have the need or capability for using the additional metadata functionality provided by the
RDF specification.

G. APPLICATION ENVELOPE SCHEMA

An application-specific envelope schema is needed to support the encapsulation of multiple
documents and common header information in a single filing. The Court Filing 1.1 specification
defines a legalEnvelope element that also supports the routing and bundling of court filing
documents. The draft GJXDM 3.0 specification also includes many of the same elements.

1. Court Filing 1.1 legalEnvelope Element

The Court Filing 1.1 specification defines a root-level legalEnvelope element that contains the
following elements:

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 27

 messageIdentification is a string used by the sending application to identify the message.

 to identifies the recipient of the transmission.

 from identifies the sender, and may provide the information needed to send a confirmation or
response.

 replyto supplies the information of where to send the confirmation or response.

 cc identifies others receiving the transmission.

 bcc identifies others receiving the transmission.

 memo provides human-readable text, ignored by applications.

 creation identifies the date and time that the envelope was created.

 dataIntegrity is a place holder for the method used to validate the integrity of a message’s
content.

 paymentInformation identifies how the filer intends to pay, is paying, or has paid any court
fees.

 authentication shall be used for authenticating the sender or for some other element
containing a digital signature.

 legal is a generic tag preceding all legal-related XML.

There is some overlap between the elements in the legalEnvelope and the ebMS headers,
specifically regarding the messageIdentification, creation, and dataIntegrity elements.

2. New GJXDM 3.0-Based FilingSubmissions Element

The GJXDM 3.0 specification includes replacements for many but not all of the elements defined in
the Court Filing 1.1 specification. A new, hybrid FilingSubmissions element may be defined using
XML Schema that incorporates elements from both the GJXDM 3.0 and the Court Filing 1.1
legalEnvelope element as needed.

3. No Application Envelope

Since the messaging layer already includes encapsulation support through MIME or DIME, many
applications will not need an application envelope. However, the messaging layer is only used for
transmission so any common information placed in the messaging header will be discarded once the
application has been received.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 28

Decision: Court Filing Blue when available; New GJXDM 3.0-based FilingSubmissions
element in the interim.

The EFM uses a new FilingSubmissions element based on the GJXDM 3.0 for the following
reasons:

 The GJXDM 3.0 supports compatibility with other justice implementations.

 The FilingSubmissions object supports common filing information across several filing
documents.

The FilingSubmissions element is defined using XML Schema and will incorporate elements from
the GJXDM 3.0 and the Court Filing 1.1 legalEnvelope element as needed. The FilingSubmissions
element is defined in the XML Interface Specifications deliverable.

H. APPLICATION OBJECT SCHEMA

The EFM must adopt a standard schema for the application objects that describe the content of the
filing, query, and policy exchanges. The two alternative models for court filing, query/response and
court policy application objects are the Court Filing 1.1 specifications and new objects based on the
GJXDM 3.0.

1. Court Filing 1.1 Elements

The Court Filing 1.1 standard defines elements and structures for the filing and confirmation objects.
Although it is designed to support extension data elements, such as query/response, many of these
extensions are still in development. In addition, implementations of the Court Filing standard,
including the Georgia Courts Automation Commission Court Filing Interoperability Pilot, have
identified deficiencies in the Court Filing 1.0 and 1.1 specifications. These known deficiencies
include the following:

 The DTD does not provide sufficient validation capabilities. Simple validation against the
DTD is not sufficient for interoperability.

 The “over-inclusive and optional” philosophy sometimes results in multiple ways to achieve
the same result (e.g., encapsulation).

 The definitions of the elements in the Court Filing specification do not provide sufficient
detail.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 29

 The specification does not include a process for validation of compliance with the
specification.

 The specification does not define security practices or protocols.

Despite these deficiencies, the Court Filing 1.1 specification represents the most complete open
specification for electronic court filing developed to date.

2. New GJXDM-Based Court Filing, Query/Response, and Court Policy Objects

The successor version to Court Filing 1.1, currently referred to as Court Filing Blue, will include a
completely new object-based content model for court filing using the elements and structures
defined in the Justice XML 3.0 specification. The Georgia Technology Research Institute (GTRI)
published a draft specification for Justice XML 3.0 in December 2002, which defines a set of core
horizontal objects common to information exchanges across the justice process. The draft also
defines an extension mechanism for defining “Activity Objects” that support integration within
specific vertical industries. Justice XML 3.0 will include a set of “Court Filing Activity Objects”
that specifically support court processes including electronic filing. As the Justice XML 3.0 core
objects are finalized, GTRI will work with representatives from LegalXML and OXCI to develop
the Court Filing Activity Objects. Although the process for developing Court Filing Blue is still
being defined, the LegalXML Court Filing TC has stated that the Justice XML 3.0 and the Court
Filing Activity Objects will provide the framework for Court Filing Blue.

Decision: Court Filing Blue objects when available; New GJXDM 3.0-based Court Filing,
Query/Response and Court Policy Objects in the interim.

The EFM uses new court filing, query/response and court policy objects for the following reasons:

 The new objects will adopt the use of schemas to address the deficiencies in the Court Filing
1.1 DTD.

 The use of the GJXDM 3.0 specification will also improve compatibility with other justice
standards by increasing the number of common elements over ten-fold.

I. SERVICE DESCRIPTION SCHEMA

An essential property of any Web service is that it be “self-describing.” Web services typically
provide this feature through service description and transport binding schema which are used at
design-time for implementing client interfaces to the Web service. The two most common

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 30

specifications for describing Web services are the WSDL specification and the ebXML Collabora-
tion Protocol Profile (CPP) and Agreement specification.

1. WSDL

As discussed in Section II, WSDL represents the baseline specification for describing the network
location and transport-layer bindings of a Web service as well as the methods and interfaces
available through the Web service. At a minimum, the EFM must support WSDL to meet the
standard definition of a Web service.

2. ebXML CPP/A 2.0

The ebXML CPP/A 2.0 specification is an extension to WSDL. In addition to the features supported
through WSDL, CPP/A also enables the parties in a Web-service exchange to publish additional
details regarding each party’s message exchange capabilities and business processes as their CPP.
Although CPP/A is a member of the ebXML suite of specifications and is compatible with the
ebXML Messaging and Registry and Repository specifications, there is no interdependence between
the specifications.

3. No Requirement for Service Descriptions

A valid alternative to the use of WSDL and ebXML CPP/A would be to minimize complexity and
forgo the requirement that the EFM interfaces be self-describing. Although technically not Web
services, the EFM interfaces could still be based on SOAP and take advantage of other Web service
specifications. The disadvantage of this approach would be that developers implementing interfaces
to the EFM would still need the details regarding the address information, bindings, and protocols
necessary to interface to the Web service.

Decision: WSDL.

The EFM will support WSDL for the following reasons:

 Supporting a service protocol simplifies the implementation of client interface to the EFM.

 WSDL is simpler to implement and supported by a wider range of development tools than
the ebXML CPP/A specification.

Service description is required for the development of the EFSP, CMS, and DMS interfaces and
must be supported by the OXCI EFM.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 31

J. COLLABORATION AGREEMENT SCHEMA

Another feature of certain Web services is the ability to negotiate collaboration agreements between
parties involved in the exchange that describe service-level parameters such as Quality of Service
(QoS) and cost and security characteristics. These specifications are used at design-time to develop
contract agreements regarding the messaging, bindings, and security protocols in common between
the parties to be used in a specific exchange. Two specifications for negotiating collaboration
agreements are the Web Service End-point Language (WSEL) and ebXML CPP/A.

1. WSEL

The WSEL specification developed by IBM defines a schema for negotiating collaboration
agreements. WSEL includes descriptions for the QoS, cost, and security characteristics of a Web
service interface and the typical sequence of operations supported by the interface. However, the
WSEL has not yet been submitted by IBM to a standards organization for approval. WSEL is very
early in the standards process, and it is unclear whether WSEL will receive the critical mass of
support needed to become an accepted standard.

2. ebXML CPP/A 2.0

In addition to service description, the ebXML CPP/A specification also supports the negotiation of
collaboration agreements between parties. Specifically, it facilitates the creation of agreements by
determining the intersection of the CPPs from both of the parties participating in the exchange. In
December 2002, the ebXML CPP/A 2.0 specification was approved as an Approved OASIS
Standard.

3. No Requirement for Collaboration Agreements

A valid alternative to the use of WSEL and ebXML CPP/A is to minimize complexity and to not
require a specific collaboration agreement schema. This capability is not a required feature of Web
services and could be omitted without impacting the complexity of interfacing to the EFM.

Decision: No support for collaboration agreement.

The EFM does not require collaboration agreements for the following reasons:

 WSEL and ebXML CPP/A are not yet widely supported by Web service development tools.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 32

 It is unclear whether there is a definite need for the automation of contracts between the
parties involved in electronic court filing.

K. REGISTRY AND REPOSITORY SCHEMA

Registries are directories that enable organizations to publish the WSDL for their Web services so
that developers may discover them at design-time. Repositories store the additional objects and
schemas that developers need to implement interfaces to the Web services. The two most common
specifications for describing Web service registries are the UDDI and ebXML Registry specifica-
tions.

1. UDDI

As discussed in Section II, UDDI represents the baseline standard for Web service registries. The
OASIS UDDI Specification TC has published UDDI Version 2 and Version 3 as Committee
Specifications.

To be scalable to a large number of clients and interoperable with other Web services, the EFM
should support the UDDI specification.

2. ebXML Registry

The ebXML Registry and Registry Information Model 2.0 specifications define registries that
provide similar registry capabilities to a UDDI Web services registry while also providing object
repositories that support the submission and retrieval of objects that define Web services. eXML
Registry version 2.0 is an Approved OASIS Standard. ebXML Registry version 2.1 is currently an
OASIS Committee Specification.

3. None

A viable alternative to implementing UDDI or ebXML Registry would be to minimize complexity
and not use a registry or repository standard. The disadvantage of this approach would be that,
without a central registry, the location of Web services will be much more difficult.

Decision: UDDI.

The EFM will support the UDDI specification for registries for the following reasons:

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 33

 The need for central registries for Web services increases as the number of organizations and
interfaces using Web services increases. Assuming that most EFM implementation involve
multiple EFSPs filing with multiple courts, support for a Web services registry will simplify
implementation of the EFSP interfaces to the EFMs.

 UDDI is simpler to implement and better supported than the ebXML Registry specification.

The registry and repository is not a required feature and will not be supported by the initial
implementation of the OXCI EFM. However, as the number of implementations grows, registries
and repositories will become essential for scalability, and therefore, will be supported.

L. DATABASE STRUCTURE

A critical component of the EFM will be some sort of database storage system for temporarily
queuing filings and storing and retrieving filing information. The database will support system
reliability by queuing filings and notices until they can be reviewed by the clerk or delivered to the
CMS, DMS, or EFSP. The EFM architecture should adopt as a standard one of the two basic types
of database interfaces, which are relational and object-oriented.

1. Relational Database Interface

Relational databases are the most common type of database designs. Relational databases store
information in tables with each row in a table representing a set of related data. Relational database
management systems (RDBMSs) such as Oracle, Sybase, Structured Query Language (SQL) Server,
or MySQL support the vast majority of existing databases.

Standard relational database interfaces include the Open Database Connectivity (ODBC), and the
Java Database Connectivity (JDBC), which use SQL. These interfaces are widely supported by the
majority of databases, third-party applications, and database support tools. Relational database
interfaces are also well supported by a large pool of individuals with relational database administra-
tion experience and skills.

2. Object-Oriented Database Interface

Although relational database interfaces store and retrieve tabular data efficiently, they do not support
the storage and retrieval of object-based data, such as in the Justice XML 3.0 model. In these cases,
it is often better to use an object-oriented database interface which provides native support for the
storage and retrieval of objects. This simplifies implementation by reducing the database interface
complexity that the application needs to implement.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 34

Object database management systems (ODBMSs) natively support storage and retrieval of object-
oriented data. However, many RDBMSs also provide object-relational adapters that support
transparent storage and retrieval of objects. Standard object-oriented and object-relational database
interfaces include ActiveX Data Objects (ADO) and Java Data Objects (JDO).

Decision: Relational Database Interface.

The EFM uses a standard relational database interface for internal storage of filings and filing
information for the following reasons:

 Most courts and legal organizations already have a relational database infrastructure.

 The ebXML MSH requires a relational database interface.

M. LOCATION OF THE CLERK REVIEW INTERFACE

This EFM design issue involves a decision on the location of the clerk review interface. After filings
are submitted to the court, the court clerk reviews the filing and accepts or rejects the filing. If the
filing is accepted, the filing documents are stored to the DMS and a case is opened in the CMS. If
the filing is rejected, the filing should be returned to the filer with a message explaining why the
filing was rejected. When filings are rejected, the filing documents should not be stored in the DMS
and no case should be opened in the CMS. The two most logical locations for the clerk review
interface are in the CMS and in the EFM.

1. In the CMS

The CMS and DMS are the key applications in courts that manage their cases electronically. The
court clerk regularly uses the CMS user interface, and adding a review interface for electronic filings
should be trivial. Some CMSs may even already provide an interface for reviewing electronic
filings.

2. In the EFM

The EFM could also support the clerk review interface, preferably as a Web interface. Although the
EFM would be a new application for the court clerk, the interface could be as simple as a Web
browser form. Because the EFM will already require an HTTP server to support the ebXML
interface, the addition of a basic clerk review interface would not significantly increase the
complexity of the EFM application.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 35

Decision: In the EFM.

Clerk review should occur in the EFM for the following reasons:

 The EFM is the gateway into the court and provides electronic validation of the court filings.
Clerk review is an extension to include the clerk in the validation process. As the Court Fil-
ing and Court Policy specifications evolve to become better defined, the ability of the EFM
to electronically validate the filing should eventually improve to the point where no manual
review by the clerk is necessary.

 Supporting clerk review at the EFM reduces the complexity of the interfaces with the CMS
and DMS. If the clerk rejects the filing, the filing and documents never reach the CMS or
DMS. If clerk review occurs at the CMS, rejections by the clerk would require the rollback
(nullification) of several transactions to delete the documents from the DMS and to update
the status of the filing in the EFM.

Although the EFM should include a basic clerk review interface, it should also support court-specific
configurations in which the basic interface is replaced with more sophisticated clerk review
interfaces that pull in data from a CMS and/or DMS. Therefore, the clerk review interface should be
implemented as a replaceable module with well-defined APIs.

* * * * * *

Now that the key design issues have been identified and resolved, we can use the requirements and
design decisions as the basis for an implementation. In the next section, we propose an architecture
to support electronic court filing based on the requirements and design decisions.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 36

IV. DESIGN ARCHITECTURE

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 37

IV. DESIGN ARCHITECTURE

In this section, we propose an architecture for the EFM implementation. The architecture is based
on the requirements defined in Section II and the design decision discussed in Section III. The EFM
architecture discussion is organized under the following sections:

 System Architecture – Introduces the system architecture including the system components.

 System Interfaces – Describes each system interface in detail, including the structure and
content of each interface.

 Software Components – Describes each software component in detail, including the standards
for implementing each component and interfacing between components.

 EFM Framework – Introduces the Counterclaim OpenEFM framework for implementing the
EFM application and graphical user interface (GUI) components.

 EFM Interfaces – Proposes UML-based prototypes for the internal interfaces necessary to
implement the EFM application component.

 EFM Classes – Proposes UML-based prototypes for the Java classes necessary to implement
the EFM application component.

 Use Cases – Illustrates the UML-based interactions between classes for each of the six use
cases defined in the requirements.

A. SYSTEM ARCHITECTURE

A proposed architecture for the EFM is shown in EXHIBIT II. Each of the system components in
the exhibit is described below. The software components within each system component are
described in subsection IV.C.

1. EFM Server

The EFM server represents the middleware that connects the EFSP, CMS, DMS, and Web browser
components. It includes the Web server, application server, and database server components. The
OXCI EFM server may be hosted on a Linux, Unix, or Windows platform.

Application Server (JBoss, Websphere)

Servlet Container
Servlets, JSP

Application Container
J2EE

ebXML MSH
Servlets

EFM Application
EJBCF XML

over JAXM

CMS

CMS Adapter
EJB or other

CF XML
over SOAP

Custom API

DMS

DMS Adapter
EJB or other

Custom APICF XML
over SOAP

Web Browser (IE)
HTML

HTTPS

Database Server (MySQL, DB2, Oracle)
SQL

JDBCJDBC

CF XML over
ebMS over HTTPS

EFM Server (Unix, Linux, Windows)

EFM GUI
JSP

RMI
 over IIOP

EFSP Server

XML Parser (Xerces)
DOM, SAX

JAXP, JAXB

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

DEPLOYMENT VIEW

EXHIBIT II

5053\02\65273(vsd)

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 38

2. EFSP Server

The EFSP server is the filing service provider’s system that interfaces with the EFM server. It may,
in fact, be another implementation of the OXCI EFM server using the architecture described above.

3. CMS

The CMS is the case management system which stores case information, including information
about documents filed with the court. The CMS is specific to each court or organization.

4. DMS

The DMS is the document management system that stores electronic or imaged versions of court
documents. The DMS is specific to each court or organization.

5. Web Browser

The Web browser represents the client system and application used to support interactive filings,
clerk review, and EFM administration. The OXCI EFM will be tested using the Internet Explorer
Web browser.

B. SYSTEM INTERFACES

The four types of system interfaces supported by the architecture are:

 Court Filing.

 Query/Response.

 Court Policy.

 Payments.

These interfaces are implemented in XML and are collectively referred to as the CF XML interfaces.
The following subsections describe the content of each interface and the system components that
implement them.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 39

1. Court Filing

The court filing interfaces include the submission of filing objects from the EFSP to the EFM, from
the EFM to the CMS and DMS, and the return of one confirmation object for each filing. The filing
objects are structured as follows:

SOAP Header
ebMS Header

SOAP Body
 ebMS Manifest

FilingSubmissions Element
FilingSubmission Elements

 MIME attached documents

The confirmation objects are structured as follows:

SOAP Header
ebMS Header

SOAP Body
 ebMS Manifest

FilingConfirmations Element
FilingConfirmation Elements

 MIME attached documents

2. Query/Response

The query/response interfaces include the query requests from the EFSP to the EFM, from the EFM
to the CMS and DMS, and the response from each query request. Each query request must apply to
a specific case – these interfaces are not designed to support queries across cases. The query objects
are structured as follows:

SOAP Header
ebMS Header

SOAP Body
 ebMS Manifest
FilingQueries Element

Query Elements
 MIME attached documents

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 40

The response objects are structured as follows:

SOAP Header
ebMS Header

SOAP Body
 ebMS Manifest
FilingResponses Element

Response Elements
 MIME attached documents

3. Court Policy

The court policy interfaces include policy requests from the EFSP to the EFM and the return of the
corresponding policy object from the EFM to the EFSP. The court policy interface is implemented
in the EFM as a query and response as described above.

4. Payments

The payment interface supports payment requests and payment confirmations according to the UBL
specification. The payment requests and confirmations are included as MIME attached documents
as follows:

 SOAP Header
 SOAP Body
 MIME attached documents
 PaymentRequest or Payment

C. SOFTWARE COMPONENTS

The system components in EXHIBIT II include a number of software components. Each software
component is described below, including the implementation and interface standards for each
component, and the products supported by the OXCI EFM for implementing that component.

1. Web Server

The Web server provides the container for all the HTTP interfaces. The Web server is compliant
with the Java Servlet and Java Server Pages (JSP) specifications and hosts two subcomponents: the
EFM GUI and an ebXML MSH servlet. The OXCI EFM will be tested with the Tomcat Web server
which is bundled with most J2EE-compliant application servers.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 41

EFM GUI

The EFM GUI represents the server-side code used to support clerk review, and EFM administra-
tion. The EFM GUI will not support filing into the local EFM or other EFMs or review of previous
filings. The EFM administration functions supported by the GUI will not include database
administration. The GUI is generated using JSP and interfaces with Web browsers using HTTPS
and with the EFM application using Java Remote Method Invocation (RMI) over the Internet Inter-
ORB Protocol (IIOP).

MSH

The MSH represents the message service handler that connects the EFSP with the EFM application.
The MSH is implemented as a servlet. Between the MSH and the EFM, messages conform with the
CF XML specifications over a Java API for XML Messaging (JAXM) interface. Between the MSH
and the EFSP, messages conform with the CF XML specifications over an ebMS 2.0 interface. The
MSH interface must be defined in WSDL.

The MSH must support both synchronous and asynchronous messages. For instance, in the
SubmitFiling use case (see EXHIBIT VI-1 in subsection IV.G), the response from the FilingMan-
ager to the EFSP is a synchronous response in the same HTTPS session that indicates a filing
disposition of “received.” In the ReviewFiling use case (see EXHIBIT VI-2), the two updateFiling-
Status messages from the FilingManager to the EFSP are asynchronous messages indicating filing
dispositions of “accepted”/”rejected” and “filed.”

2. Application Server

The application server provides the container for the business-logic components and interfaces to the
back-end systems including the CMS and DMS. The application server is compliant with the J2EE
1.4 specifications and hosts the EFM application, XML parser, CMS adapter and DMS adapter
subcomponents. The OXCI EFM will be tested with the JBoss and IBM Websphere application
servers. It should be compatible with any J2EE-compliant application server.

EFM Application

The EFM application subcomponent provides the core business-logic for the application. The EFM
application is implemented in Enterprise JavaBeans (EJB) 2.0 beans including entity beans and
Container Managed Persistence (CMP). The internal framework, interfaces, and classes within the
EFM application are detailed in the next three subsections.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 42

XML Parser

The XML parser provides a service for traversing and extracting data stored in XML. The XML
parser must support the Document Object Model (DOM) and Simple API for XML (SAX)
specifications. The EFM application calls the XML parser using the Java API for XML Parsing
(JAXP) interface. The OXCI EFM will be tested with the Xerces XML parser.

CMS and DMS Adapters

The CMS and DMS adapters are modular interfaces that connect the EFM application with the CMS
and DMS. The CMS and DMS adapters may or may not be implemented using Java. The EFM will
include a Java CMS Connector, defined using EJB 2.0 session beans, that provides a Web service
interface between the EFM and any non-Java CMS adapters. This interface will support the CF
XML over SOAP over HTTPS and be defined in WSDL. In the case of a Java CMS or DMS, the
adapter will implement the CMS Connector interface directly and connect to the CMS or DMS using
Java RMI. The adapter interfaces with the CMS or DMS using the custom API specific to that
application.

The CMS Connector and CMS and DMS adapters must support both synchronous and asynchronous
messages. For instance, in the ReviewFiling use case (see EXHIBIT VI-2), the initial response from
the CMS and DMS adapter to the CMS Connector is a synchronous response in the same HTTPS
session that indicates a filing disposition of “received.” The updateFilingStatus messages from the
CMS and DMS adapter to the CMS Connector are asynchronous messages indicating filing
dispositions of “filed.”

3. Database Server

The database server provides persistence for the MSH and the EFM application. The database server
must support SQL and interfaces with the MSH and EFM application using the JDBC interface. The
OXCI EFM will be tested with the MySQL, Oracle, and DB2 databases. It should be compatible
with any relational database with a JDBC interface.

D. EFM FRAMEWORK

OXCI has selected the OpenEFM by Counterclaim as the development framework for the OXCI
EFM application and GUI components. Leveraging an existing implementation will reduce the time
and cost of implementation and will hopefully position the EFM for better interoperability with other
court filing products in the future.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 43

OpenEFM was developed by Counterclaim and released to the public as open source software
licensed under the Mozilla licensing model. OpenEFM was developed in Java for Linux or Unix
platforms and supports the Court Filing functional standards. OpenEFM includes the following
components:

 A Web interface for submission of court filings using HTTP over SSL (HTTPS).

 A SOAP over HTTPS interface for submission of court filings.

 A security manager that handles authentication using SSL and HTTP cookies.

 A skeleton for a Query/Response interface.

 A skeleton for CMS interfaces that includes specifications for SOAP or Java RMI interfaces.

 A LegalXML validator that validates filing against any DTD derived from the Court Filing
DTD. Administrators can customize validation using simple Xpath queries.

 An audit logger that records events to a log file.

 An ID Dispenser that generates Universally Unique Identifiers (UUIDs) and time stamps for
each filing.

 A rudimentary Web interface for clerk review. If the clerk accepts the filing, it is sent to the
CMS interface.

 A sample client that demonstrates how an EFSP can submit a filing using SOAP.

OpenEFM was developed using principles that are shared with the OXCI EFM architecture, such as:

 Support for XML standards, especially LegalXML Court Filing.

 Preference for open technologies and open source software.

 A free licensing model.

Although the OpenEFM does not yet support all the features of the OXCI EFM architecture, it
provides a framework that should be easily adapted to support the requirements of the OXCI EFM.

E. EFM INTERFACES

EXHIBIT III presents an abstract software architecture for the EFM application component. The
EFM application component includes the following interfaces and methods:

+submitNotice(in notice : Filing) : Confirmation
+submitFiling(in filing : Filing) : Confirmation
+listFilings()
+listPendingFilings()
+retrieveFiling(in filingID) : Filing
+acceptFiling(in filingID) : Confirmation
+rejectFiling(in filingID) : Confirmation

FilingManager

+queryFiling(in query : Query) : Response

QueryManager

+listAccounts()
+retrieveAccount(in accountID)
+updateAccount(in accountID)
+viewLog()
+authenticate()
+log()

SecurityManager

+validateEnvelope() : Confirmation
+virusCheck() : Confirmation

AbstractValidator

+storeFiling(in filing : Filing, in filingID) : Confirmation
+listPendingFilings()
+retrieveFiling(in filingID) : Filing
+updateFilingStatus(in filingID, in filingStatus) : Filing

StorageManager

+submitFiling(in filing : Filing) : Confirmation
+submitQuery(in query : Query) : Response

CMSConnector

+queryPolicy() : Policy

PolicyManager

+validateFiling(in filing : Filing) : Confirmation

FilingValidator

+validateQuery(in query : Query) : Confirmation

QueryValidator

AbstractManager

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

LOGICAL VIEW

EXHIBIT III

+updateFilingStatus(in filingID, in filingStatus)
+submitNotice(in notice : Filing) : Confirmation

EFSPStub

+submitFiling(in filing : Filing) : Confirmation
+submitQuery(in query : Query) : Response

CMSAdapterStub

+submitFiling(in filing : Filing) : Confirmation
+submitQuery(in query : Query) : Response

DMSAdapterStub

5053\02\65274(vsd)

+updateFilingStatus(in filingID, in filingStatus)
+submitNotice(in notice : Filing) : Confirmation

«interface»
EFSPService

+listFilings()
+listPendingFilings()
+retrieveFiling(in filingID) : Filing
+acceptFiling(in filingID) : Confirmation
+rejectFiling(in filingID) : Confirmation

«interface»
ReviewGUI

+listAccounts()
+retrieveAccount(in accountID)
+updateAccount(in accountID)
+viewLog()

«interface»
AdminGUI

+queryPolicy() : Policy

«interface»
PolicyService

+queryFiling(in query : Query) : Response

«interface»
QueryService

+submitFiling(in filing : Filing) : Confirmation

«interface»
FilingService

+submitNotice(in notice : Filing) : Confirmation

«interface»
NoticeService

+submitFiling(in filing : Filing) : Confirmation
+submitQuery(in query : Query) : Response

«interface»
CMSService

+submitFiling(in filing : Filing) : Confirmation
+submitQuery(in query : Query) : Response

«interface»
DMSService

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 44

 FilingService

» submitFiling(filing: Filing): Confirmation

 QueryService

» queryFiling(query: Query): Response

 PolicyService

» queryPolicy(): Policy

 ReviewGUI

» listFilings()

» listPendingFilings()

» retrieveFiling(filingID): Filing

» acceptFiling(filingID): Confirmation

» rejectFiling(filingID): Confirmation

 AdminGUI

» listAccounts()

» retrieveAccount(accountID)

» updateAccount(accountID)

» viewLog()

EXHIBIT IV presents a deployment view of the EFM to CMS/DMS interfaces. EXHIBIT III
presents a class view and also includes the following interfaces and methods on the EFSP, CMS, and
DMS:

 EFSPService

» updateFilingStatus(filingID, filingStatus)

» submitNotice(notice: Filing): Confirmation

 CMSService

» submitFiling(filing: Filing): Confirmation

» submitQuery(query: Query): Response

OCXI EFM
(Java)

Implementations of CMS Connector
(Java Interface)

CMS-Specific CMS Adapter
(Java) Java CMS

CMS-Independent CMS
Adapter
(Java)

Non-Java CMS 1

Compile-Time Dependency

Runtime
Dependency

Java Method Calls (in
process, or remote/RMI)

Non-Java CMS 2

SOAP Messages

Exists now in OpenEFM

Will exist in OXCI

Not in OXCI (built by each
CMS vendor or court)

Opportunities for Standardization:

The efiling standard will presumably only
include the SOAP messages between the CMS-
independent adapter and all non-Java CMSs.

However, the CMS Connector Java interface
should be viewed as a standardized component
(at least de facto), as anyone writing a Java
CMS that will plug in directly to OXCI will be
dependent on that interface.

SOAP
Adapter 2

SOAP
Adapter 1

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

EFM TO CMS/DMS INTERFACE DEPLOYMENT VIEW

EXHIBIT IV

5053\02\68955(vsd)

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 45

 DMSService

» submitFiling(filing : Filing): Confirmation

» submitQuery(query: Query): Response

F. EFM CLASSES

The EFM architecture includes the following data classes:

 Filing

 Confirmation

 Query

 Response

 Policy

The filing object migrates through a number of states according to the events in the filing process.
EXHIBIT V presents a state diagram for the filing object that includes the following states in order
of succession:

 Received denotes a filing object that has been submitted and is awaiting review by the court
clerk.

 Accepted denotes a filing object that has been accepted by the clerk but has not yet been
accepted by the CMS and DMS.

 Filed denotes a filing object that has been accepted by the CMS and DMS. This is a final
state.

 Rejected denotes a filing object that has been rejected by the clerk. This is a final state.

The EFM architecture also includes the following system classes:

 AbstractManager, which represents an abstract transaction manager. This class encapsu-
lates the functionality common to the FilingManager, QueryManager, and PolicyManager
classes.

Received

Accepted

Filed

Rejected

Filing Received

Accepted by Clerk

Filing Rejected by Clerk

CMS and DMS Updated

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

FILING STATE DIAGRAM

EXHIBIT V

5053\02\65274(vsd)

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 46

 FilingManager, which manages the filing and notice processes and provides the functional-
ity for clerk review. This class implements the FilingService, NoticeService, and Review-
GUI interfaces.

 QueryManager, which manages the query and response processes. This class extends the
AbstractManager class and implements the QueryService interface.

 PolicyManager, which manages court policy requests. This class extends the Abstract-
Manager class and implements the PolicyService interface.

 SecurityManager, which manages authentication and logging. This class implements the
AdminGUI interface.

 StorageManager, which manages data storage.

 AbstractValidator, which represents an abstract schema validator. This class encapsulates
the functionality common to the FilingValidator and QueryValidator classes. It includes
methods for validating the envelope and validating the attached documents using external
virus checking software.

 FilingValidator, which validates court filings and notices. This class extends the Abstract-
Validator class.

 QueryValidator, which validates court queries and response. This class extends the
AbstractValidator class.

 CMSConnector, which connects the FilingManager and QueryManager objects the
CMSService and DMSService interfaces.

EXHIBIT III also includes the following classes that represent the realizations of interfaces on the
EFSP, CMS, and DMS:

 EFSPStub, which implements the EFSPService interface.

 CMSAdapterStub, which implements the CMSService interface.

 DMSAdapterStub, which implements the DMSService interface.

G. USE CASES

EXHIBITS VI-1 through VI-6 present sequence diagrams for each of the six use cases defined in
Section II. The use cases include:

EFSP FilingManager StorageManagerFilingValidatorSecurityManager

submitFiling()

validateFiling()

storeFiling

authenticate

log()

log

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

SUBMIT FILING SEQUENCE DIAGRAM

EXHIBIT VI-1

5053\02\65274(vsd)

validateEnvelope()

FilingManager StorageManager CMSConnector DMSAdapter CMSAdapter

submitFiling()

submitFiling

EFSP
Clerk

listFilings

retrieveFiling

acceptFiling

SecurityManager

retrieveFiling

submitFiling

log()

log

updateFilingStatus

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

REVIEW FILING SEQUENCE DIAGRAM

EXHIBIT VI-2

5053\02\65274(vsd)

updateFilingStatus

updateFilingStatus

updateFilingStatus

EFSP QueryManager CMSConnector CMSAdapter DMSAdapter

queryFiling()

submitQuery

submitQuery

SecurityManager

log()

log

QueryValidator

submitQuery

validateQuery()

authenticate

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

QUERY FILING SEQUENCE DIAGRAM

EXHIBIT VI-3

5053\02\65274(vsd)

validateEnvelope()

EFSP PolicyManager SecurityManager

queryPolicy

log()

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

QUERY POLICY SEQUENCE DIAGRAM

EXHIBIT VI-4

5053\02\65274(vsd)

Administrator

SecurityManager

listAccounts()

retrieveAccount()

updateAccount()

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

MANAGE ACCOUNTS SEQUENCE DIAGRAM

EXHIBIT VI-5

log()

5053\02\65274(vsd)

Administrator

SecurityManager

viewLog()

DISCUSSION DRAFT
10-22-04

OPEN XML COURT INTERFACE
ELECTRONIC FILING MANAGER ARCHITECTURE

VIEW LOGS SEQUENCE DIAGRAM

EXHIBIT VI-6

5053\02\65274(vsd)

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) 47

 Submit Filing in which a filer submits a filing with the court through the EFM.

 Review Filing in which a clerk interfaces with the EFM to review and accept or reject filings
submitted to the court.

 Query Filing in which a user queries the court CMS through the EFM.

 Query Policy in which a user obtains the policies specific to a court from the EFM.

 Manage Accounts in which an administrator interfaces with the EFM to create, modify, or
remove accounts and privileges on the EFM.

 View Logs in which an administrator interfaces with the EFM to review the system and EFM
application logs.

Each diagram illustrates the sequence of exchanges between classes in the use case. Each exchange
is illustrated as a method between two classes.

* * * * * *

The architecture defined in this document provides a good framework for the implementation of an
EFM application based on open standards that is scalable and flexible enough to support a wide
range of court models and systems.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) A-1

APPENDIX A
GLOSSARY

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) A-2

GLOSSARY

AAMVA American Association of Motor Vehicle Administrators

ACL access controls list

ADO ActiveX Database Objects

API Application Program Interface

CF XML Court Filing XML

CMP Container Managed Persistence

CMS Case Management System

CMS/API Case Management System/Application Program Interface

CPA Collaboration Protocol Agreement

CPP Collaboration Protocol Profile

CPP/A Collaboration Protocol Profile/Agreement

COSCA Consortium of State Court Administrators

DIME Direct Internet Message Encapsulation

DMS Document Management System

DOM Document Object Model

DTD Document Type Definition

ebXML Electronic Business eXtensible Markup Language

ebMS ebXML Messaging Service

EDI Electronic Data Interchange

EFM Electronic Filing Manager

EFP Electronic Filing Provider

EFSP Electronic Filing Service Provider

EJB Enterprise JavaBeans

FIPS Federal Information Processing Standards

FTP File Transfer Protocol

GTRI Georgia Technology Research Institute

GUI graphical user interface

GXA Global XML Web Services Architecture

HTML HyperText Markup Language

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) A-3

HTTP HyperText Transfer Protocol

HTTPS HyperText Transfer Protocol Secure

ID identification

IE Microsoft Internet Explorer

IETF Internet Engineering Task Force

IIOP Internet Inter-ORB Protocol

IP Internet Protocol

IPR Intellectual Property Rights

IPX Internetwork Packet Exchange

J2EE Java 2 Enterprise Edition

JAXM Java API for XML Messaging

JAXP Java API for XML Parsing

JDBC Java Database Connectivity

JDO Java Database Objects

JSP Java Server Pages

LAMP Linux, Apache, MySQL, and PERL

MIME Multipurpose Internet Mail Extensions

MSH Message Service Handler

NACM National Association of Court Managers

NCIC National Crime Information Center

NCSC National Center for State Courts

OASIS Organization for the Advancement of Structured Information Standards

ODBC Open Database Connectivity

ODBMS Object database management system

OSI Open System Interconnection

OXCI Open XML Court Interface

PDF Portable Document Format

QoS Quality of Service

RDBMS Relational database management system

RDF Resource Description Framework

RFC Request for Comments

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) A-4

RFP Request for Proposal

RISS Regional Information Sharing System

RMI Remote Method Invocation

RPC remote procedure call

SAML Security Assertion Markup Language

SAX Simple API for XML

S/MIME Secure/Multipurpose Internet Mail Extensions

SMTP Simple Mail Transfer Protocol

SOAP Simple Object Access Protocol

SQL Structured Query Language

SSL Secure Sockets Layer

TC Technical Committee

TCP/IP Transmission Control Protocol/Internet Protocol

TIFF Tagged Image File Format

TRP transport, routing and packaging

UDDI Universal Description, Discovery and Integration

UDP/IP User Datagram Protocol/Internet Protocol

UML Unified Modeling Language

UN/CEFACT United Nations Centre for Trade Facilitation and Electronic Business

UUID Universally Unique Identifiers

W3C World Wide Web Consortium

WS Web Services

WSDL Web Service Description Language

WSEL Web Service End-point Language

XML eXtensible Markup Language

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) B-1

APPENDIX B
REFERENCES

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) B-2

REFERENCES

In the creation of this document, we consulted a large number of standards specifications and other
documents related to electronic court filing. These documents included the following:

A. OASIS SPECIFICATIONS

1. M. Halverson, “Electronic Court Filing 1.1 Proposed Standard,” OASIS LegalXML Member
Section Electronic Court Filing Technical Committee, http://www.oasis-
open.org/committees/legalxml-courtfiling/documents/filing1.1/22072002cf1-1.pdf, July 22,
2002.

2. S. Durham, “Electronic Court Filing Query and Response Standard (draft),” OASIS
LegalXML Member Section Electronic Court Filing Technical Committee, October 22,
2002.

3. D. Bergeron, “Court Policy Interface Requirements,” OASIS LegalXML Member Section
Electronic Court Filing Technical Committee, http://www.oasis-open.org/committees/ le-
galxml-courtfiling/documents/court_policy/court_policy_20021018.pdf, October 14, 2002.

4. OASIS, “Definition of Court Filing Blue,” OASIS LegalXML Member Section Electronic
Court Filing Technical Committee, December 12, 2004.

5. M. Yuan, S. Spohn, “EFM-CMS Interface Requirements version 6,” LegalXML, Inc., June 4,
2001.

6. OASIS, “Message Service Specification version 2.0 (Approved Standard),” OASIS ebXML
Messaging Services Technical Committee, http://www.oasis-open.org/committees/ebxml-
msg/ documents/ebMS_v2_0.pdf, April 1, 2002.

7. OASIS, “Collaboration Protocol Profile and Agreement Specification version 2.0 (Approved
OASIS Standard),” OASIS ebXML Collocation Protocol Profile and Agreement Technical
Committee, http://www.oasis-open.org/committees/ebxml-cppa/documents/ebcpp-2.0.pdf,
September 23, 2002.

8. OASIS, “OASIS/ebXML Registry Information Model v2.0 (Approved OASIS Standard),”
OASIS/ebXML Registry Technical Committee, http://www.oasis-open.org/committees/ re-
grep documents/2.0/specs/ebrim.pdf, April 2002.

9. OASIS, “OASIS/ebXML Registry Services Specification v2.0 (Approved OASIS Stan-
dard),” OASIS/ebXML Registry Technical Committee, http://www.oasis-
open.org/committees/regrep/ documents/2.0/specs/ebrs.pdf, April 2002.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) B-3

10. D. Ehnebuske, B. McKee, D. Rogers (eds.), “UDDI Version 2.04 API Specification (OASIS
Committee Specification),” OASIS UDDI Specifications Technical Committee, http://
uddi.org pubs/ProgrammersAPI-V2.04-Published-20020719.pdf, July 19, 2002.

11. P. H.-Baker, C. Kaler, R. Monzillo, A. Nadalin, “Web Services Security Core Specification
(Working Draft 09),” http://www.oasis-open.org/committees/wss/documents/WSS-Core-09-
0126-merged.pdf, January 26, 2003.

12. P. Hallem-Baker, E. Maller, “Assertions and Protocol for the OASIS SAML (Approved
Standard),” OASIS Security Services Technical Committee, http://www.oasis-open.org/
committees/security/docs/cs-sstc-core-01.pdf, May 31, 2002.

13. G. Beaver, “Verification of ebXML Messaging for use with government,” OASIS e-
Government Technical Committee, November 26, 2003.

B. W3C SPECIFICATIONS

1. T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler. W3C, “Extensible Markup Language
(XML) 1.0 (Second Edition),” W3C Recommendation, http://www.w3.org/TR/2000/REC-
xml-20001006, October 2000.

2. D. Fallside (ed), “XML Schema Part 0: Primer,” W3C Recommendation,
http://www.w3.org/ TR/2001/REC-xmlschema-0-20010502/primer.html, 2 May 2001.

3. D. Eastlake, J. Reagle, D. Solo, “XML-Signature Syntax and Processing,” W3C Recommen-
dation, http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/, February 2002.

4. D. Eastlake, J. Reagle, “XML Encryption Syntax and Processing,” W3C Candidate
Recommendation, http://www.w3.org/TR/2002/CR-xmlenc-core-20020802/, December 2002.

5. D. Box et al, “Simple Object Access Protocol (SOAP) 1.1,” W3C Note, http://www.w3.org/
TR/2000/NOTE-SOAP-20000508, May 8, 2000.

6. M. Gudgin, M. Hadley, J. J. Moreau, H. Frystyk Nielsen, “SOAP 1.2 Part 1: Messaging
Framework,” W3C Candidate Recommendation, http://www.w3.org/TR/2002/CR-soap12-
part1-20021219, December 20, 2002.

7. O. Lassila, R. Swick (eds.), “Resource Description Framework (RDF) Model and Syntax
Specification,” W3C Recommendation, http://www.w3.org/TR/1999/ REC-rdf-syntax-
19990222, February 22, 1999.

8. J. Barton, S. Thatte, H. F. Nielsen, “SOAP Messages with Attachments,” W3C Note, http://
www.w3.org/TR/2000/NOTE-SOAP-attachments-20001211, December 11, 2000.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) B-4

9. F. Nielsen, H. Ruellan, “SOAP 1.2 Attachment Feature,” W3C Working Draft,
http://www.w3.org/TR/2002/WD-soap12-af-20020924/, September 24, 2002.

10. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web Services Description
Language (WSDL) 1.1,” W3C Note, http://www.w3.org/TR/2001/NOTE-wsdl-20010315, 15
March 2002.

11. R. Chinnici, M. Gudgin, J. J. Moreau, S. Weerawarana, “Web Services Description
Language (WSDL) 1.2,” W3C Working Draft, http://www.w3.org/TR/2003/WD-wsdl12-
20030124, January 24, 2003.

C. JAVA SPECIFICATIONS

1. B. Shannon, “Java 2 Platform Enterprise Edition Specification v1.4,” Sun Microsystems,
http://java.sun/com/j2ee, November 24, 2003.

2. D. Coward, “Java Servlet specification version 2.3,” Sun Microsystems,
http://java.sun.com/products/servlet, August 13, 2001.

3. E. Pelegrí-Llopart, JavaServer Pages Specification version 1.2,” Sun Microsystems,
http://java.sun.com/products/jsp, August 21, 2001.

4. J. Ellis, L. Ho, M. Fisher, “JDBC 3.0 Specification,” Sun Microsystems, http://java.sun.com/
products/jdbc, October, 2001.

5. N. Kassem, A. Vijendran, R. Mordani, “Java API for XML Messaging (JAXM) Specification
v1.1,” Sun Microsystems, http://java.sun.com/xml/jaxm, June 2002.

6. R. Mordani, S. Boag, “Java API for XML Processing (JAXP) version 1.2,” Sun Micrososys-
tems, http://java.sun.com/xml/jaxp, September 6, 2002.

D. IETF RFCS

1. R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, T. Berners-Lee, “RFC 2616: Hypertext
Transfer Protocol – HTTP/1.1,” IETF, http://www.ietf.org/rfc/rfc2616.txt, January 1997.

2. Palme, A. Hopman, N. Shelness, “RFC2557: MIME Encapsulation of Aggregate Docu-
ments, such as HTML (MHTML),” http://www.ietf.org/rfc/rfc2557.txt, March 1999.

3. H. F. Nielsen, H, Sanders, R. Butek, S. Nash, “Internet Draft: Direct Internet Message
Encapsulation (DIME),” IETF, http://www.ietf.org/internet-drafts/draft-nielsen-dime-02.txt,
June 17, 2002.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) B-5

E. OTHER DOCUMENTS

1. T. Bousquin, “Initial Draft of RFP Elements,” OXCI Advisory Committee, September 16,
2002.

1. M. Kindl, J. Wandelt, W. Roberts, C. Medlin, “Justice XML Data Dictionary (JXDD) v3.0 –
Status, Design and Development,” Information Technology and Telecommunications Labo-
ratory, Georgia Technology Research Institute, December 16, 2002.

2. “Global Justice XML Data Model v3.0.0.3,” Department of Justice, Office of Justice
Programs, http://justicexml.gtri.gatech.edu, November 28, 2003.

3. W. Caelli, D. Longley, M. Shain, Information Security Handbook, Macmillan, London, 1991.

4. Counterclaim, “OpenEFM Whitepaper,” http://www.counterclaim.com/openefm.htm, June
13, 2002.

5. McMillan, T Carlson, “inCounter: An Open Source Electronic Filing Demonstration
Project,” NCSC, http://www.court-tech.org/inCounter/inCounter-whitepaper-v5.pdf, Sep-
tember 2002.

6. W. T. Vincent, “Georgia Courts Automation Commission Court Filing Interoperability Pilot
Lessons Learned Document,” http://e-ct-file.gsu.edu/, Georgia State University, December 4,
2001.

7. W. T. Vincent, “Georgia Courts Automation Commission Court Filing Interoperability Pilot
Lessons Learned Document II,” http://e-ct-file.gsu.edu/, Georgia State University, May 20,
2002.

8. D. Powell, “Architectural Models, Business Decisions, and Interoperability Issues,” Tybera
Development Group, http://www.tybera.com, November 7, 2002.

9. F. D. Kasparek, J. Greacen, T. Bousquin, “Standards for Electronic Filing Processes
(Technical and Business Approaches),” National Center for State Courts,
http://www.ncsconline.org/
D_Tech/Standards/Documents/pdfdocs/Recommended_%20Process_%20standards_%2011_
27_02.pdf, November 7, 2002.

10. “Tomcat 4 Servlet/JSP Container,” Apache Software Foundation, http://jakarta.apache.org/
tomcat/tomcat-4.1-doc/, 2002.

11. “Jboss Application Server version 3.2.3,” Jboss Group, http://jboss.org/, 2003.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) B-6

12. “Websphere Application Server,” IBM, http://www.ibm.com/software/info1/Websphere/,
2003.

13. “freebXML Hermes Message Service Handler,” Center for E-Commerce Infrastructure
Development, Department of Computer Science and Information Systems, University of
Hong Kong, http://www.freebxml.org/msh.htm, 2003.

14. “GoXML Messaging,” XML Global, http://www.xmlglobal.com/prod/messageservice/, 2003.

15. “Xerces2 Java Parser,” Apache Software Foundation, http ://xml.apache.org/xerces2-j/,
2003.

16. “MySQL Database Server,” MySQL AB, http://www.mysql.com/products/mysql/, 2003.

17. “DB2 Universal Database,” IBM, http://www-306.ibm.com/software/data/db2, 2003.

18. Sierra Systems, “Prototype for XML-based Efiling of Criminal Complaints,” October 2003.

19. Georgia Technology Research Institute, “Rules for Subset Schemas,”
http://justicexml.gtri.gatech.edu/rules_for_schema_subsets.html, February 2004.

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) C-1

APPENDIX C
REVISION HISTORY

 DISCUSSION DRAFT
 10-22-04

5053\02\65268(doc) C-1

REVISION HISTORY

Version Date Revised By Description

0.9 1/31/03 Mr. James Cabral This was the initial version of this
architecture document.

1.0 2/12/03 Mr. Cabral This version included several revisions by
the OXCI Steering Committee.

2.0 1/6/04 Mr. Cabral This version updated the architecture to
support the LegalXML Court Filing Blue
requirements, including support for the
GJXDM 3.0 release.

2.1 4/26/04 Mr. Cabral This version included a new requirement
for antivirus checking and added detail to
the CMS/DMS adapters, payment
interface, and security. This version also
added EXHIBIT IV.

3.0 10/22/04 Mr. Cabral This version reflects the architecture “as
built” in the EFM. It includes asynchro-
nous messaging requirements for the
EFSP, CMS, and DMS interfaces; the
removal of the “Submit Notice” use case;
and the removal of the “two-way”
functional requirement.

	I. INTRODUCTION
	A. OBJECTIVES
	B. DOCUMENT ORGANIZATION

	II. REQUIREMENTS
	A. FUNCTIONAL REQUIREMENTS
	B. INFORMATION REQUIREMENTS
	C. INTEGRATION REQUIREMENTS
	D. POLICY REQUIREMENTS
	E. BUSINESS MODEL REQUIREMENTS

	III. DESIGN DECISIONS
	A. NETWORK PROTOCOLS
	B. COMMUNICATION PROTOCOLS
	C. MESSAGING PROTOCOLS
	D. AUTHENTICATION PROTOCOLS
	E. ENCRYPTION PROTOCOLS
	F. APPLICATION DATA STRUCTURE DEFINITIONS
	G. APPLICATION ENVELOPE SCHEMA
	H. APPLICATION OBJECT SCHEMA
	I. SERVICE DESCRIPTION SCHEMA
	J. COLLABORATION AGREEMENT SCHEMA
	K. REGISTRY AND REPOSITORY SCHEMA
	L. DATABASE STRUCTURE
	M. LOCATION OF THE CLERK REVIEW INTERFACE

	IV. DESIGN ARCHITECTURE
	A. SYSTEM ARCHITECTURE
	B. SYSTEM INTERFACES
	C. SOFTWARE COMPONENTS
	D. EFM FRAMEWORK
	E. EFM INTERFACES
	F. EFM CLASSES
	G. USE CASES

	APPENDIX A
	APPENDIX B
	APPENDIX C

